

ABCs of Machine Learning

What is Artificial Intelligence?

Our area of focus today

Artificial intelligence (AI) refers to computer systems capable of performing complex tasks that historically only a human could do, such as reasoning, making decisions, or solving problems.

What is Machine Learning?

"The activity or process of gaining knowledge or skill by studying, practicing, being taught, or experiencing something."

Machine Learning is a set of algorithms or programs that enable systems to learn from data or experience and improve their performance over time without being explicitly programmed.

Usual Programming v/s Machine Learning

"Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel

What is Machine Learning?

The function of a machine learning system can be:

- **Descriptive -** A telecom company analyzes customer call data to identify common reasons for service complaints.
- **Predictive -** An e-commerce platform predicts which products a customer is likely to purchase next based on browsing and purchase history.
- **Prescriptive -** A logistics company suggests optimal routes for drivers based on traffic, weather, and delivery schedules.

Data in Machine Learning

Dataset in Machine Learning

Problem Statement:

Create the model that can classify the different species of the Iris flower.

https://medium.com/@iebaseelanravi96/machine-learning-iris-classification-33aa18a4a983

Training & Testing Data

You should split the original dataset into two subsets:

- 1) A training set that the model trains on.
- 2) A test set for evaluation of the trained model.

Labelled Data [N samples]

Usually divided in the ratio 75:25 or 80:20

Training Data [W samples]

Test Data for remaining *N-W* samples

iHub-Data-FMML 2023

Learning Techniques in Machine Learning

Learning Techniques in ML

iHub-Data-FMML 2023

Supervised Learning

- Machine is taught by example.
- Dataset includes desired inputs and outputs
- Algorithm must determine the output given a new input.

Resulting Model

Unsupervised Learning

- Models are trained using unlabeled dataset
- Learn interesting structures in the data without any supervision.
- Data is categorized based on their similarities and dissimilarities.

Clustering in market segmentation

ANNUAL INCOME 📫

Cluster 1: High income/high property value Cluster 2: Middle income/middle property value Cluster 3: High income/low property value

https://www.techtarget.com/searchenterpriseai/definition/clustering-in-machine-learning

Clustering

Partitioning Clustering: Divides the dataset into a set number of non-overlapping clusters Hierarchical Clustering: Divides the dataset into a tree-like structure of clusters. Begins with individual data points as separate clusters and merges or splits them iteratively.

K-Means Clustering

Algorithm organizes data into clusters such that there is <u>high intra-cluster</u> similarity and <u>low inter-cluster</u> similarity.

Semi-supervised Learning

Can we use unlabeled data to augment a small labeled sample to improve learning?

- 1) Train a model using a small set of known examples.
- 2) Use the model to predict answers for unknown examples.
- 3) Add confident predictions to the training set and retrain.
- 4) Repeat until the model stops improving.

Reinforcement Learning

 Learning by doing
 We give rewards of feedback to the algorithm to learn from and improve future results.

Training a logistics robot

Performs actions

Learning Techniques in ML

Learning Techniques in ML

Machine Learning Types

https://www.javatpoint.com/types-of-machine-learning

Supervised Learning

Supervised Learning

Classification

Age	Income	Loan Status	
21	20000	Rejected	
37	55000	Approved	
29	35000	Approved	
23	17000	Rejected	
34	70000	Approved	
47	84000	Rejected	
25	30000	Approved	

In Classification problem, output is a discrete value/class label

> In Regression problem, output is a range of numeric values

Regression

Age	Income	Loan Amount	
21	20000	0	
37	55000	150000	
29	35000	120000	
23	17000	550000	
34	70000	250000	
47	84000	0	
25	30000	90000	

GO Classes - Machine Learning

Classification v/s Regression

Examples:

- Spam Filtering
- Image classification
- Text classification

Examples:

- Predicting the price of a house
- Predicting the number of sales
- Predicting the risk of a disease

iHub-Data-FMML 2023

Classification in Supervised Learning

Classification

https://www.visual-design.net/post/top-machine-learning-algorithms-classification

Support Vector Machines

SVM finds the optimal line that separates data points of different classes, by maximizing the margin.

https://vitalflux.com/classification-model-svm-classifier-python-example/

Decision Trees Classifier

- flowchart-like tree structure
- internal node represents a feature
- the branch represents a decision rule
- each leaf node represents the outcome.

K Nearest Neighbours Algorithm

Given training data and a test point.
Prediction: Look at

The Most Similar Training Example(s)

K Nearest Neighbours Algorithm

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

Regression in Supervised Learning

Regression

https://www.visual-design.net/post/top-machine-learning-algorithms-classification

Linear Regression

The line for which the error between the predicted values and the observed values is minimum is called the best fit line.

According to you which one of the two is the Best Fit Line - A or B?

Linear Regression

Linear Regression is a predictive model used for finding the linear relationship between a dependent variable and one or more independent variables.

Y = mX + b

- Y = dependent variable,
- X = independent variable
- m = slope (or Gradient, determines change in Y, per unit change in X),
- \circ b = Y-intercept

Evaluating Machine Learning Models

Underfitting & Overfitting

Which of the models will perform best on the unseen test data?

iHub-Data-FMML 2023

Evaluating ML Models - Regression

MSE - Mean Squared Error is used to find the squared difference between actual and predicted value.

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y_i})^2$$

https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/

Confusion Matrix:

https://www.evidentlyai.com/classification-metrics/confusion-matrixc

False Positives & False Negatives

Is the patient pregnant or not?

https://cs229.stanford.edu/section/evaluation metrics spring2020.pdf

Confusion Matrix: - Question for You!

Which rate should be low?

- 1) Screening For A Terminal Disease.
- 2) Automatic bombing on detecting a target from a drone
- 3) Giving Access To A Secure Installation

Confusion Matrix: - Answers

Which rate should be low?

- 1) Screening For A Terminal Disease. - FALSE NEGATIVE SHOULD BE LOW
- Automatic bombing on detecting a target from a drone
 FALSE POSITIVE LOW/NULL
- 3) Giving Access To A Secure Installation - FALSE POSITIVE LOW

Confusion Matrix: - Accuracy, Precision & Recall

These were the ABCs of Machine Learning!

What after Machine Learning?

Machine Learning works well for Structured Data. (data stored in tables)

Deep Learning is used for unstructured data (rich media, text, social media activity, video files, audio files, surveillance imagery)

Explore

https://www.researchgate.net/figure/Domains-of-AI-ML-DL-and-widely-used-algorithms fig1 361501987

How you can join us & connect with us

DATA SCIENCE STUDENT CLUB-JNTUH

WhatsApp group

©DATASCIENCESTUDENTCLUBJNTUH

Scan for Notebook 1:

Scan for Notebook 2:

